Put on your thinking cap: G‐quadruplexes, helicases, and telomeres

Put on your thinking cap:  G‐quadruplexes, helicases, and telomeres

Understanding how G-quadruplex (G4) DNA structures that form in G-rich tracts of the genome affect chromosomal stability and processes such as copying the genetic information (DNA replication) or decoding the information (RNA transcription) has posed a significant challenge to researchers in the field. Although historically there has been some controversy over the existence of G4 DNA structures in vivo, emerging evidence suggests that they are indeed likely to form and have cellular consequences. In a recent study, Smith et al. investigated a role of G4 DNA in telomere capping [1], i.e., the adaptation of a nucleoprotein structure that prevents the chromosomal DNA ends from being recognized as DNA breaks and protects them from becoming degraded or fused. Telomere capping is a fairly complex process since a number of proteins have been shown to bind telomeric single-stranded or double-stranded DNA at the chromosome end. Moreover, the ability of telomeric DNA to form a variety of conformations including tloops and G-quadruplexes adds to the complexity of how competing proteins and DNA structures influence the structural topology and metabolism of chromosome ends [2]. Using genetic and pharmacological approaches, Smith et al. showed that under conditions that stabilize G4 DNA structures, which form from a guanine-rich telomeric ssDNA exposed in a yeast temperature sensitive cdc13-1 mutant, telomere capping is in turn enhanced and phenotypes associated with capping defects are suppressed [1]. Conversely, telomere uncapping occurs under conditions that dissuade the formation of telomeric G4 DNA in the cdc13-1 mutant. The authors proposed a model in which G4 DNA structure enables G4 DNA binding proteins to further stabilize the telomere end by binding  to G-quadruplex DNA, thereby preventing 5’ to 3’ exonucleolytic resection when the normal protein that blocks telomeric end processing is defective. Rad53- mediated checkpoint activation is also dampened, permitting suppression of the growth defects characteristic of the cdc13-1 mutant at the nonpermissive temperature. https://www.aging-us.com/issue/v3i4

impact factor oncotarget Zoya Demidenko Dr. Zoya N. Demidenko Zoya N. Demidenko , Ph.D. is Executive Manager of the Oncotarget journal . Oncotarget publishes high-impact research papers of general interest and outstanding significance and novelty in all areas of biology and medicine: in translational, basic and clinical research including but not limited to cancer research, oncogenes, oncoproteins and tumor suppressors, signaling pathways as potential targets for therapeutic intervention, shared targets in different diseases (cancer, benign tumors, atherosclerosis, eukaryotic infections, metabolic syndrome and other age-related diseases), chemotherapy, and new therapeutic strategies. After earning her Ph.D. in molecular biology, Zoya was awarded a Fogarty post-doctoral Fellowship from the National Institutes of Health in Bethesda, MD. After successful completion of post-doctoral training, she continued her professional career at George Washington University and Albert Einstein School of Medicine . In 2005 she cofounded the startup company Oncotarget Inc. which is focused on the development of anti-aging and anti-cancer drugs. Her research interests include signal transduction, cell cycle and cellular senescence, and their pharmacological targeting. In 2009 she cofounded the publishing house Impact Journals which specializes in publishing scientific journals. In 2011 she was selected to be a Member of the National Association of Professional Women .

Mikhail (Misha) V. Blagosklonny graduated with an MD and PhD from First Pavlov State Medical University of St. Petersburg, Russia. Dr. Mikhail V. Blagosklonny has then immigrated to the United States, where he received the prestigious Fogarty Fellowship from the National Institutes of Health. During his fellowship in Leonard Neckers’ lab at the National Cancer Institute (NCI), he was a co-author of 18 publications on various biomedical themes, including targeting HSP90, p53, Bcl2, Erb2, and Raf-1. He also was the last author for a clinical phase I/II trial article. 
After authoring seven papers during a brief yet productive senior research fellowship in the El-Deiry Cancer Research Lab at the University of Pennsylvania, Dr. Blagosklonny returned to NCI to work with Tito Fojo. Together, they published 26 papers. Moreover, Dr. Blagosklonny published many of experimental research papers and theoretical papers as sole author. The abovementioned sole-author articles discussed two crucial topics. The first of these discussed selectively killing cancer cells with deregulated cell cycle or drug resistance via verifying their resistance. The outcomes and underlying notion were so revolutionary that they were incorrectly cited by other scientists as “reversal of resistance,” even though the publication was titled, “Exploiting of drug resistance instead of its reversal.” One big supporter of this concept was the world-famous scientist Arthur Pardee, with whom Dr. Blagosklonny co-authored a joint publication in 2001.
The second theme throughout Dr. Blagosklonny’s sole-author articles is a research method to develop knowledge by bringing several facts together from seemingly irrelevant areas. This results in new notions with testable forecasts, which in turn can be “tested” via analyzing the literature further. Likewise, the concept was co-authored by Arthur Pardee in a 2002 article in Nature. The first success of the new research methodology was the description of the feedback regulation of p53, as confirmed by the discovery of mdm2/p53 loop; and the explanation why mutant p53 is always overexpressed, published in 1997. The most important result revealed by Dr. Blagosklonny’s research methodology is the hyperfunction (or quasi-programmed) theory of aging and the revelation of rapamycin as an exclusively well-tolerated anti-aging drug, published in 2006. As mentioned in Scientific American, Michael Hall, who discovered mTOR in 1991, gives Dr. Blagosklonny credit for “connecting dots that others can’t even see.”
In 2002, Dr. Blagosklonny became associate professor of medicine at New York Medical College. He agreed to accept responsibilities as a senior scientist at Ordway Research Institute in Albany, New York, in 2005, before receiving another position at Roswell Park Cancer Institute as professor of oncology in 2009.
Since coming to Roswell Park Comprehensive Cancer Center in 2009, Dr. Blagosklonny has studied the prevention of cancer (an age-related disease) via stopping organism aging - in other words, “preventing cancer via staying young.” His laboratory closely worked together with Andrei Gudkov’s and conducted research on the suppression of cellular senescence, namely suppression of cellular conversion from healthy quiescence to permanent senescence. This led to the discovery of additional anti-aging medicines beyond rapamycin. The cell culture studies were complemented by studies in mice, including several models like normal and aging mice, p53-deficient mice, and mice on a high-fat diet.
Dr. Blagosklonny has also published extensively on the stoppage of cellular senescence via rapamycin and other mTOR inhibitors, life extension and cancer stoppage in mice, and combinations of anti-aging medicines to be taken by humans. A rapamycin-based combination of seven clinically available medications has been named the “Koschei Formula” and is now used for the treatment of aging in patients at the Alan Green Clinic in Little Neck, New York. 

Comments

Popular posts from this blog

Cellular proteome, coregulators, endocrine system and the human brain: the Regulatory biology of humanism

Disrupting the circadian clock: Gene-specific effects on aging, cancer, and other phenotypes

Progeria, rapamycin and normal aging: recent breakthrough

Indy knockdown in mice mimics elements of dietary restriction.

Spontaneous inactivating p53 mutations and the “selfish cell”

Accelerated aging syndromes, are they relevant to normal human aging

New comparative genomics approach reveals a conserved health span signature across species

Resveratrol targets PD-L1 glycosylation and dimerization to enhance antitumor T-cell immunity

Age-related resistance of skeletal muscle-derived progenitor cells to SPARC may explain a shift from myogenesis to adipogenesis

Genome integrity, stem cells and hyaluronan